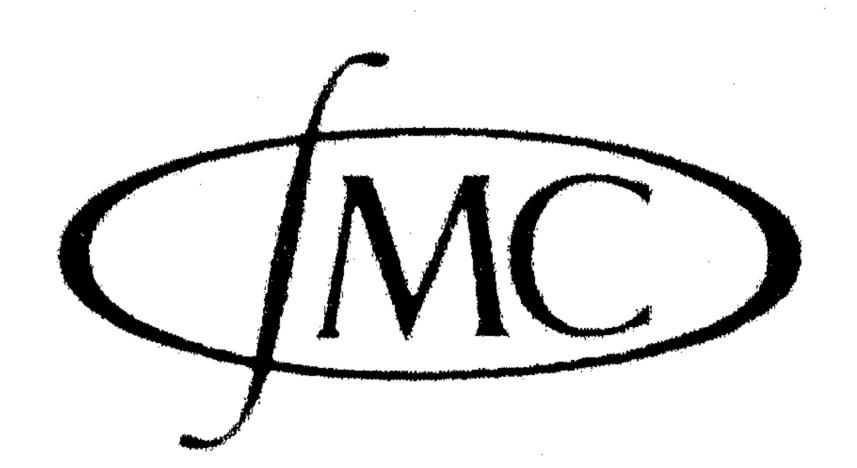
STICHTING MATHEMATISCH CENTRUM 2e BOERHAAVESTRAAT 49

AMSTERDAM

MAITRA A

A Note on Undiscounted Dynamic Programming S 355 (SP89)

The Annals of Mathematical Statistics, 37(1966) II, p 1042-1044.



A NOTE ON UNDISCOUNTED DYNAMIC PROGRAMMING'

By Ashor Maitra²

Mathematisch Centrum, Amsterdam

1. Introduction. We consider a system with a finite number of states $1, 2, \dots, S$. Once a day, we observe the current state s of the system and choose an action a from an arbitrary set A of actions. As a result, two things happen: (1) we receive an immediate income i(s, a), and (2) the system moves to a new state s' with probability $q(s' \mid s, a)$. Assume that the incomes are bounded, that is, there exists a positive number M such that $|i(s, a)| \leq M$, $s = 1, 2, \dots, S$, $a \in A$. The problem is to maximise the average rate of income (to be defined below).

Denote by F the set of all functions f on S into A. A policy $\pi = \{f_1, f_2, \dots\}$ is a sequence of functions $f_n \in F$. Thus, to use policy π is to choose the action $f_n(s)$ on the nth day, if the system is in state s on that day. We shall call a policy $\pi = \{f_n\}$ stationary if $f_n = f$, $n = 1, 2, \dots$, and denote it by $f^{(\infty)}$.

With each $f \in F$, associate (1) the $S \times 1$ vector r(f), whose sth coordinate is i(s, f(s)) and (2) the $S \times S$ stochastic matrix Q(f), whose (s, s') element is q(s' | s, f(s)). Hence, if we use the policy $\pi = \{f_n\}$, the *n*-step transition matrix of the system is $Q_n(\pi) = \prod_{k=1}^n Q(f_k)$. In particular, if our policy is stationary, the system becomes a discrete time-parameter Markov chain with stationary transition probabilities.

Given a policy π , let us denote by $W_n(\pi)$ the $S \times 1$ vector of incomes on the nth day, when the policy π is used. Set

$$x(\pi) = \lim_{N \to \infty} N^{-1} \sum_{n=1}^{N} W_n(\pi)$$

whenever the limit exists. Blackwell [1] has shown that the limit exists whenever π is a stationary policy. In the case of a stationary policy, $x(f^{(\infty)})$ is the vector of average rates of income, when the policy $f^{(\infty)}$ is used.

We shall say that a policy $f_0^{(\infty)}$ is optimal among stationary policies if $x(f_0^{(\infty)}) \ge x(f^{(\infty)})$ for all $f \in F$ (for any two $S \times 1$ vectors w_1 and w_2 , we shall write $w_1 \ge w_2$ if every coordinate of w_1 is at least as large as the corresponding coordinate of w_2 , and $w_1 > w_2$ if $w_1 \ge w_2$ and $w_1 \ne w_2$).

Blackwell [1] showed that, if A is finite, there exists an optimal policy among stationary policies. When A is not finite, there may not exist an optimal policy. Consider, for instance, a system with a single state and $A = \{1, 2, \dots\}$. Choice of action i brings an income of 1 - 1/i dollars. It is clear that there is no optimal stationary policy.

The purpose of this note is to prove:

THEOREM. Let A be arbitrary. Given $\epsilon > 0$, there exists a stationary policy $f_{\epsilon}^{(\infty)}$

Received 24 November 1965.

¹ Report SP 89 of the Statistics Department, Mathematisch Centrum, Amsterdam.

² Now with Indian Statistical Institute, Calcutta.

such that $x(f_{\epsilon}^{(\infty)}) \ge \sup_{f \in F} x(f^{(\infty)}) - \epsilon e$, where e is the $S \times 1$ vector with all coordinates unity.

2. Proof of theorem. We introduce a discount factor β , $0 \le \beta < 1$, so that the value of unit income n days in the future is β^n . Blackwell [1] has shown that the total expected discounted return from a policy $f^{(\infty)}$ is given by the $S \times 1$ vector

$$V_{\beta}(f^{(\infty)}) = \sum_{n=0}^{\infty} \beta^n [Q(f)]^n r(f)$$

and that

$$x(f^{(\infty)}) = \lim_{\beta \to 1} (1 - \beta) V_{\beta}(f^{(\infty)}).$$

With each $f \in F$ and each β , $0 \leq \beta < 1$, let us associate the transformation $L_{\beta}(f)$ which maps the $S \times 1$ vector w into $L_{\beta}(f)w = r(f) + \beta Q(f)w$. We note that $L_{\beta}(f)$ is monotone, that is, $w_1 \geq w_2$ implies $L_{\beta}(f)w_1 \geq L_{\beta}(f)w_2$. Note that $V_{\beta}(f^{(\infty)})$ is the fixed point of $L_{\beta}(f)$.

In order to prove our theorem, we need a lemma.

LEMMA. Let f_1 , f_2 , \cdots , $f_k \in F$ ($k \geq 2$). Then there exists $h \in F$ such that

$$V_{\beta}(h^{(\infty)}) \geq V_{\beta}(f_i^{(\infty)}), \qquad i = 1, 2, \cdots, k$$

for all $\beta \geq some \beta_0$.

Proof. It suffices to prove the lemma for k = 2. The proof for general k then proceeds by induction.

Denote by u_s the sth coordinate of the $S \times 1$ vector u.

Consider $V_{\beta}(f_1^{(\infty)})_s$ and $V_{\beta}(f_2^{(\infty)})_s$. Either $V_{\beta}(f_1^{(\infty)})_s \geq V_{\beta}(f_2^{(\infty)})_s$ for all $\beta \geq \text{some } \beta'$ or $V_{\beta}(f_1^{(\infty)})_s < V_{\beta}(f_2^{(\infty)})_s$ for a sequence of β 's tending to 1. But for each s and each f, $V_{\beta}(f^{(\infty)})_s$ is a rational function of β , as the representation $V_{\beta}(f^{(\infty)}) = [I - \beta Q(f)]^{-1}r(f)$ shows. Consequently, either $V_{\beta}(f_1^{(\infty)})_s \geq V_{\beta}(f_2^{(\infty)})_s$ for all $\beta \geq \text{some } \beta''$ or $V_{\beta}(f_1^{(\infty)})_s < V_{\beta}(f_2^{(\infty)})_s$ for all $\beta \geq \text{some } \beta''$. Thus, for each s, there exists a $\beta_s < 1$ such that either $V_{\beta}(f_1^{(\infty)})_s \geq V_{\beta}(f_2^{(\infty)})_s$ for all $\beta \geq \beta_s$ or. $V_{\beta}(f_1^{(\infty)})_s < V_{\beta}(f_2^{(\infty)})_s$ for all $\beta \geq \beta_s$.

Let $\beta_0 = \max_{1 \leq s \leq s} \beta_s$. For each $\beta \geq \beta_0$, define $u(\beta)_s = \max(V_{\beta}(f_1^{(\infty)})_s$, $V_{\beta}(f_2^{(\infty)})_s$). We now define $h \in F$ as follows:

$$h(s) = f_1(s) \quad \text{if } V_{\beta}(f_1^{(\infty)})_s \geq V_{\beta}(f_2^{(\infty)})_s \quad \text{for all } \beta \geq \beta_0$$
$$= f_2(s) \quad \text{if } V_{\beta}(f_1^{(\infty)})_s < V_{\beta}(f_2^{(\infty)})_s \quad \text{for all } \beta \geq \beta_0, \quad 1 \leq s \leq S.$$

Set $u(\beta) = (u(\beta)_1, u(\beta)_2, \dots, u(\beta)_s)$. It is easy to check that $L_{\beta}(h)u(\beta) \ge u(\beta)$ for all $\beta \ge \beta_0$. Denoting by $L_{\beta}^{(n)}(h)$ the *n*th iterate of $L_{\beta}(h)$, we see that $L_{\beta}^{(N)}(h)u(\beta) \ge u(\beta)$ for $N = 1, 2, \dots$ and all $\beta \ge \beta_0$. For fixed $\beta \ge \beta_0$, let $N \to \infty$. We get: $V_{\beta}(h^{(\infty)}) \ge u(\beta)$ for all $\beta \ge \beta_0$. This completes the proof of the lemma.

PROOF OF THEOREM. Set $x_s^* = \sup_{f \in F} (x(f^{(\infty)})_s)$ and $x^* = (x_1^*, x_2^*, \dots, x_s^*)$. Let $\epsilon > 0$. For each s, choose $f_s \in F$ such that $x(f_s^{(\infty)})_s > x_s^* - \epsilon$. Hence, for each s, there exists $\beta_s' < 1$ such that $(1 - \beta)V_{\beta}(f_s^{(\infty)})_s > x_s^* - \epsilon$ for all $\beta \ge 1$ β_s' . Let $\beta' = \max_{1 \leq s \leq S} \beta_s'$. But by the preceding lemma, there exists $h \in F$ and $\beta'' < 1$ such that $V_{\beta}(h^{(\infty)}) \geq V_{\beta}(f_s^{(\infty)})$ for $1 \leq s \leq S$ and all $\beta \geq \beta''$. Hence $(1-\beta)V_{\beta}(h^{(\infty)}) > x^* - \epsilon c$ for all $\beta \geq \max(\beta', \beta'')$. Let $\beta \to 1$. We get: $x(h^{(\infty)}) \geq x^* - \epsilon c$. The proof is completed by taking $h = f_{\epsilon}$.

Remark. In [2], I gave an example of a system with countably infinite state space and finite action space A, where there exists no optimal policy among stationary policies. It would be of interest to know if there exist ϵ -optimal policies in this case.

REFERENCES

[1] Blackwell, D. (1962). Discrete dynamic programming. Ann. Math. Statist. 33 719-726.

[2] Maitra, A. (1965). Dynamic programming for countable state systems. Sankhyā Ser. A 27 259-266.